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Abstract: Power system parameter matching is one of the key technologies in the development
of hybrid electric vehicles. The power source is the key component of the power system which
composed of engine, motor, and battery. Reasonable power source parameters are conducive to
improve the power, fuel economy, and emission performance of vehicles. In this paper, regarding the
problem that the plug-in hybrid electric vehicle (PHEV) parameter matching needs to weigh different
design objectives, a multi-objective optimization and matching method based on a genetic algorithm
is proposed. The vehicle dynamic model is established based on MATLAB/Simulink (Mathworks in
Natick, Massachusetts, USA), and the feasibility of the model is verified by simulation. The main
performance parameters of the power source are matched by theoretical analysis, and the PHEV
integrated optimization simulation platform is established based on Isight(Dassault Systemes in Paris,
France) and MALTAB/Simulink. Power source components are optimized considering fuel economy
and lightweight objectives under the performance constraints. Firstly, the optimal matching results
under different weights are obtained by transforming different objectives into single objective, and the
multi-island genetic algorithm is used to obtain the optimal matching results in which the equivalent
fuel consumption of 100km is reduced by 1%. Then the Pareto solution is obtained using the NSGA-II
algorithm. The optimal matching results can be found after determining the weights of different
design objectives, which proves the effectiveness and superiority of the multi-objective optimization
matching method. The optimization results show that compared with the original vehicle, the fuel
economy effect is increased by 2.26% and the lightweight effect is increased by 8.26%.

Keywords: optimization; matching; PHEV; genetic algorithm; fuel economy; lightweight

1. Introduction

Nowadays, the number and annual production of internal combustion engine vehicles are
increasing rapidly, resulting in energy crisis, urban air pollution, and other issues that are becoming
increasingly serious [1]. Pure electric vehicles are subject to current power battery technology and
current infrastructure imperfections, and driving ranges and charging times bring great troubles to
consumers [2]. Plug-in hybrid electric vehicle (PHEV) takes into account the advantages of traditional
hybrid vehicles and pure electric vehicles. Compared with traditional hybrid vehicles, PHEV power
battery packs have a larger capacity, a longer driving range, and can be charged by an external power
grid, as well as better fuel economy and emission performance; it is a research hotspot in the field of
new energy vehicles [3–5]. As the PHEV is equipped with two power source components: A traditional
internal combustion engine and a driving motor, reasonable power source parameters matching is
very necessary [6].

Energies 2020, 13, 1127; doi:10.3390/en13051127 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en13051127
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/5/1127?type=check_update&version=2


www.manaraa.com

Energies 2020, 13, 1127 2 of 20

The parameter matching of hybrid electric vehicle’s power system has the characteristics of
non-linearity, multi-parameter and multi-degree of freedom. The whole matching process is complicated
and cumbersome. It has been one of the hot topics in the research of hybrid electric vehicles [7].

Zeng et al. [8] presents the design method of a hybrid degree for parallel hybrid electric vehicles.
The design of total power of power source satisfies the dynamic constraints. Then the design of
hybrid degree is simplified by total power matching. Finally, the design variables are exhausted
within the reasonable range of hybrid degree from 12.5% to 37.5%. The relationship between fuel
economy improvement and hybrid degree is obtained by least square curve fitting. The optimum
mixing design scheme is selected based on the lowest fuel consumption per kilometer. In Reference [9],
combined with the development process of fuel cell bus power system, the simulation is carried
out by adding the driving cycles of NYCC (New York City Cycle), ECE (Economic Commission for
Europe), and New York BUS in the ADVISOR library. Under the condition of constant total power,
the exhaustive mixing degree variable is used to select the optimal power system matching scheme
with the objective of minimum fuel consumption. Exhaustion method is the simplest and most feasible
method to optimize the matching problem, but it wastes time and computer costs. When the number
of optimization variables increases, the number of optimization times increases exponentially, and the
degree of optimization results depends on the minimum increment of variables. Wang et al. [10] used
the basic orthogonal test method and comprehensive orthogonal test method to optimize the power
system with orthogonal factors such as mixing degree, battery voltage, battery capacity, and main
deceleration ratio. The results showed that the fuel economy of the optimized power system improved
by 4.1% in urban conditions of China and 8.7% in urban conditions of Wuhan. Orthogonal test method
can effectively reduce the number of optimization times and improve the optimization efficiency under
the same number of optimization variables, but the overall optimization time is still long, and the
optimization accuracy is not high.

In Reference [11], a constrained non-linear optimization model for the fuel cell hybrid power
system is established. The design variables are the rated power of fuel cell, the number of power
accumulator units, the initial and objective values of SOC (state of charge), and the transmission ratio
of the gearbox and main reducer. Sequential quadratic programming (SQP) is applied to optimize the
hybrid power system with the lowest hydrogen consumption being the objective, and the influence
of design variables on the fuel economy of the vehicle is analyzed. Zhao et al. [12] also uses SQP
to match the power system parameters of four-wheel drive fuel cell hybrid electric vehicle, but the
objective function is the size of power transmission system components. By optimization of the design,
the battery power is increased, the driving time and starting frequency of fuel cell are reduced, and
the size of each component is optimized. Hu et al. [13] discusses the optimal matching problem of
hybrid energy storage system (HESS) for fuel cell hybrid buses, a convex programming method is
proposed to optimize HESS parameters and energy management strategy parameters synchronously.
A dynamic battery life state (SOH) model is integrated to quantitatively evaluate the impact of battery
replacement strategy on HESS parameters and fuel economy. The impact is based on the total cost
of life cycle, and the battery SOH is the constraint to obtain the optimal HESS system and energy
management strategy. Gao et al. [14] compares the matching effect of the DIRECT algorithm, simulated
annealing algorithm, genetic algorithm and particle swarm optimization algorithm on the hybrid
power system. The results show that DIRECT algorithm and simulated annealing algorithm are
the most effective, but also the most time-consuming, and needs to spend 100 hours on PAST. It is
suggested to combine the characteristics of the non-gradient algorithm and gradient algorithm to
establish a hybrid algorithm for optimal matching, which can achieve global optimization and fast
convergence. In Reference [15], the fuel consumption, CO, HC and NOx indicators are weighted.
And the four indicators are standardized since the units and magnitudes are different. On the basis
of Reference [15], Wu et al. [16] increases the cost of replacing batteries in the future of the objective
function. Omar et al. [17,18] selected the fuel cell and supercapacitor cost of fuel cell electric vehicles as
well as battery weight and volume factors as the objective function to establish a detailed cost model.
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In Reference [19], aimed at the shortcomings of genetic algorithm, which is characterized by premature
convergence and low search efficiency in the later evolution stage, the simulated annealing principle
with strong local search ability is introduced into genetic algorithm to obtain adaptive genetic algorithm.
The power system parameters and control parameters are optimized simultaneously. Compared with
a conventional genetic algorithm, the comprehensive performance of fuel consumption and emission
can be improved by 4%.

As mentioned above, optimal matching method is widely used in power system parameter
matching because of its high efficiency and high precision. However, most studies focus on
single-objective optimization with optimum fuel economy or minimum cost, and few studies focus
on multi-objective optimization with both fuel economy and lightweight. The lightweight of power
system component is to reduce the power system total power so that to reduce the component size,
reduce the weight of power system and balance the cost of the whole vehicle. In this paper, a PHEV
integrated optimization simulation platform is established based on Isight and MALTAB/Simulink
software for plug-in hybrid electric bus. The power system components are optimized by weight
method and non-normalization method (Pareto mechanism) respectively considering fuel economy
and lightweight, and the corresponding optimal matching results are obtained.

2. Powertrain Model of PHEV

In this paper, a single-shaft parallel plug-in hybrid electric bus is selected as the research object to
study the matching and optimization of the power source of the hybrid power system. The powertrain
of the system is shown in Figure 1. The single-shaft parallel hybrid power system consists of an engine,
a clutch, a motor, a power battery, a gearbox, a final drive, and associated controllers. A hybrid electric
bus with this configuration can achieve a variety of working modes (as shown in Figure 2), including
pure electric mode, engine driving mode, hybrid driving mode, charging mode and braking energy
recovery mode, which can effectively improve the fuel economy.

The vehicle type equipped with this hybrid system is a low-floor bus, and Table 1 shows the basic
parameters and performance indexes of the vehicle, which is also the design goal of matching and
optimization in this paper.
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Table 1. Main parameters of PHEV.

Vehicle Parameter

Full mass 18,000 kg
Curb mass 12,000 kg

Aerodynamic resistance coefficient 0.55
Windward area 6.6 m2

Wheel radius 0.473 m

Performance Index

Maximum speed 80 km/h
Maximum gradeability 20%

0–50 km/h Accelerating time (HEV) 20 s
0–50 km/h Accelerating time (EV) 25 s

Engine

Maximum power 120 kW (2500 rpm)
Maximum torque 704 Nm (1200–1800rpm)

Driving Motor

Rated power/Maximum power 76 kW/150 kW
Rated power/Maximum power 535 Nm/1584 Nm

Power Battery

Voltage class 576 V
Battery capacity 60 Ah

2.1. Engine Model

It is very complex and inefficient to establish a non-linear model which can characterize the
internal dynamic characteristics of the engine. In this paper, the experimental modeling method is
adopted, which focuses only on the input and output characteristics of the engine, ignores the fuel
consumption caused by the dynamic migration of the engine working point, and uses the steady-state
test data of the bench test to establish the engine’s model [20].
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The engine torque Te is expressed as Equation (1):

Te = f (Throttle, ne) (1)

The fuel consumption per unit time
.

m f is expressed as Equation (2):

.
m f =

Teωebe

367.1ρg
(2)

ωe = 2πne, be is fuel consumption rate [g/(kWh)], ρ is fuel density (kg/L), and g is acceleration of
gravity (m/s2).

The engine fuel consumption m f is expressed as Equation (3):

m f =

∫ t

0

.
m f dt (3)

2.2. Driving Motor Model

The establishment of driving motor’s model is similar to that of the engine. It pays no attention to
the electromagnetic and thermodynamic characteristics of the motor body, but only to the dynamic
characteristics of the motor [2]. The external characteristics and working efficiency of the motor are
measured by bench test.

The working efficiency ηm of the motor is expressed as Equation (4):

ηm = f (Tm_req, nm) (4)

Tm_req is the demand torque of the motor (Nm), and nm is the current speed of the motor (rpm).
The actual output torque of the motor Tm is expressed as Equation (5):

Tm =

{
min(Tm_req, Tm_dis_max(nm)) Tm_req > 0
max(Tm_req, Tm_chg_max(nm)) Tm_req < 0

(5)

Tm_dis_max and Tm_chg_max are respectively the maximum driving torque and braking torque of the
motor, which are related to the current motor speed.

The output power of the motor Pm is expressed as Equation (6):

Pm =

 Tmnm
9550ηm

Tm > 0
Tmnmηm

9550 Tm < 0
(6)

2.3. Power Battery Model

The power battery system is one of the sources of energy for hybrid electric vehicles, and its
performance directly affects the power performance and fuel economy of the vehicle. The lithium-ion
battery is used in the researched PHEV for its superior high specific energy and specific power
performance [21]. In this paper, the equivalent circuit model is used to establish the battery model (as
shown in Figure 3), Voc is the open circuit voltage, Rint is the equivalent internal resistance, V0 is the
load voltage, and I0 is the charge-discharge current.

According to Ohm’s law, the battery load voltage V0 and load power Pbat are expressed as
Equation (7): {

Vo = Voc − IoRint
Pbat = VoIo = VocIo − I2

o Rint
(7)
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The battery charge–discharge current I0 is expressed as Equation (8):

Io =
Voc −

√
V2

oc − 4RintPbat

2Rint
(8)

The SOC in the battery model is calculated by the ampere–time integral method, as shown in
Equation (9):

SOC(k + 1) = SOC(k) +

∫ k+1
k Io(SOC, Pbat)dt

3600 ·Q0
(9)

SOC(k) is the SOC of the battery at k time, and Q0 is the battery capacity (Ah).Energies 2020, 13, x FOR PEER REVIEW 6 of 21 

 

 
Figure 3. Equivalent circuit diagram of power battery model. 

According to Ohm's law, the battery load voltage 0V  and load power batP  are expressed as 
Equation (7): 

2
o oc o int

bat o o oc o o int

V V I R
P V I V I I R
 = −
 = = −

 (7) 

The battery charge–discharge current 0I  is expressed as Equation (8): 

2 4
2

oc oc bat
o

int

intV V R P
I

R
− −

=  (8) 

The SOC in the battery model is calculated by the ampere–time integral method, as shown in 
Equation (9): 

( )+

+
⋅

= + 
1

0

(
,

36
) ( )

0
1

0

k

o batk
I S

SOC k SOC k
OC P dt

Q
 (9) 

( )SOC k  is the SOC of the battery at k time, and 0Q  is the battery capacity (Ah). 

2.4. Longitudinal Dynamic Model 

This paper mainly studies the longitudinal dynamic model of vehicle driving process, ignoring 
the influence of lateral dynamics on vehicle. The driving torque and braking torque acting on the 
drive shaft accelerate or decelerate the vehicle.  

According to the automobile theory [22], when the vehicle is driving: 

0t g T
t f w i j

wh

T i i
F F F F F

R
η

= = + + +  (10) 

θ

ρ

θ

δ

 =

 =
 =

 =


2

cos
1
2

sin

3.6

f

w D a r

i

a
j

F fmg

F C A v

F mg
du

F m
dt

 (11) 

when the vehicle is braking: 

_ _b b motor b mech f w i jF F F F F F F= + = + + +  (12) 

tF  is the vehicle driving force (N), tT  is the power source driving torque (Nm), gi  is the gear 

ratio of the transmission, 0i  is the gear ratio of the main reducer, Tη  is the powertrain efficiency, 

whR  is the wheel rolling radius (m), and bF  is the vehicle braking force (N), which is the sum of the 

ocV

intR
oV

oI

Figure 3. Equivalent circuit diagram of power battery model.

2.4. Longitudinal Dynamic Model

This paper mainly studies the longitudinal dynamic model of vehicle driving process, ignoring
the influence of lateral dynamics on vehicle. The driving torque and braking torque acting on the drive
shaft accelerate or decelerate the vehicle.

According to the automobile theory [22], when the vehicle is driving:

Ft =
Ttigi0ηT

Rwh
= F f + Fw + Fi + F j (10)


F f = f mg cosθ
Fw = 1

2 CDAρav2
r

Fi = mg sinθ
F j = δm dua

3.6dt

(11)

when the vehicle is braking:

Fb = Fb_motor + Fb_mech = F f + Fw + Fi + F j (12)

Ft is the vehicle driving force (N), Tt is the power source driving torque (Nm), ig is the gear ratio
of the transmission, i0 is the gear ratio of the main reducer, ηT is the powertrain efficiency, Rwh is the
wheel rolling radius (m), and Fb is the vehicle braking force (N), which is the sum of the electric braking
force Fb_motor and the mechanical braking force Fb_mech. F f is the rolling resistance (N), f is the rolling
resistance coefficient, and the specific value can be expressed as a function of vehicle speed, which is
f = 0.0076 + 0.000056ua, ua is the vehicle speed (km/h), m is the vehicle mass (kg), θ is the ramp angle
of the road (rad), Fw is the air resistance (N), CD is the air resistance coefficient, A is the windward area
(m/s2), ρa is the air density (kg/m3), vr is the relative vehicle speed (m/s), Fi is the gradient resistance
(N), F j is the acceleration resistance (N), and δ is the vehicle rotation mass conversion factor, which is
calculated as Equation (13):
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δ =


1 +

∑
Jw

mR2
wh

+
(Je+Jm)i2gi20ηT

mR2
wh

Clutch engaged

1 +
∑

Jw
mR2

wh
+

(Jm)i2gi20ηT

mR2
wh

Clutch disengaged
(13)

Jw is the vehicle rotational inertia (kg·m2), Je is the engine rotational inertia (kg·m2), and Jm is the
driving motor rotational inertia (kg·m2).

The research object of this paper is a plug-in hybrid electric bus, which mainly runs in city driving
cycle, so the simulation is based on Chinese Bus Driving Cycle (CBDC). The simulation result is shown
in Figure 4. The difference between the actual speed and the expected speed is within 1 km/h, which
can track the speed of driving cycle well and meet the accuracy requirements.
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3. Optimization and Matching Design Method of PHEV

According to the performance constraints of PHEV, the fuel economy and lightweight optimization
targets are selected to optimize and determine the design parameters of the PHEV main power
components, including engine power Pe, motor power Pm and battery capacity Q0. The optimization
and matching process of PHEV power sources is shown in Figure 5.

3.1. Analysis of Power Unit Parameters

The parameter selection of the plug-in hybrid system is related to the power performance, the
fuel economy, the manufacturing cost and the use cost. In the initial stage of vehicle design, it is
necessary to select the main performance parameters of the power system from the performance
requirements of the vehicle, so as to provide a basis for establishing a more accurate simulation model
and optimization analysis.

3.1.1. Determination of Power Source Total Power

PHEV has two power sources: Engine and motor. It is not necessary to use engine alone to
improve peak power when considering vehicle power performance requirements. Therefore, compared
with traditional internal combustion engine vehicles, PHEV mainly considers power performance
requirements of power sources under hybrid driving mode, including maximum vehicle speed,
maximum climbing degree, acceleration power demand and driving cycle demand.

(1) Power demand of maximum vehicle speed:

Ptotal1 =
ua_max

3600ηT
(mg f +

CDAu2
a_max

21.15
) (14)

where ua_max is the maximum vehicle speed under hybrid driving mode.
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(2) Power demand of maximum climbing degree:

Ptotal2 =
ua

3600ηT
(mg f cosαmax + mg sinαmax +

CDAu2
a

21.15
) (15)

where αmax is the vehicle maximum climbing degree.
(3) Power demand of acceleration under hybrid driving mode:

Ptotal3 =
ua_end

3600ηT
(mg f +

CDAu2
a_end

21.15
+

mδua_end

3.6∆t
[1− (

tm − ∆t
∆t

)
0.5
] (16)

where ua_end is the final vehicle speed during acceleration under hybrid driving mode (km/h), tm

is the acceleration time (s), and ∆t is the iteration step, usually 0.1s.
(4) Power demand of driving cycle:
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The instantaneous driving power demand of the vehicle for the power system at t time of the
target driving cycle is:

Pcyc_t =
ua_t

3600ηT
(mg f +

CDAu2
a_t

21.15
+ mδ

ua_t − ua_t−1

3.6 · dt
) (17)

where ua_t and ua_t−1 are respectively the instantaneous vehicle speed in target driving cycle at t and
t−1 time, the power demand of driving cycle is shown as Equation (18):

Ptotal4 = max(Pcyc_t) (18)

The total power should be greater than the maximum power of the four indicators mentioned above:

Ptotal ≥ max{Ptotal1, Ptotal2, Ptotal3, Ptotal4} (19)

3.1.2. Determination of Motor and Engine Power

For the traditional hybrid electric vehicles, the motor mainly provides the required peak power
to the electric drive system. The acceleration performance of the vehicle and the peak power of the
load in the driving cycle are its main concerns. However, in the driving process of PHEV, due to the
existence of pure electric driving mode, the power of the motor needs to meet the power demand
of the driving cycle when the motor drives the vehicle separately, including the power demand of
maximum vehicle speed and acceleration under pure electric driving mode.

(1) Power demand of maximum vehicle speed under pure electric driving mode:

Pm_max1 =
um_max

3600ηT
(mg f +

CDAu2
m_max

21.15
) (20)

where um_max is the maximum vehicle speed under pure electric driving mode.
(2) Power demand of acceleration under pure electric driving mode:

Pm_max2 =
um_end

3600ηT
(mg f +

CDAu2
m_end

21.15
+

mδum_end

3.6∆t
[1− (

tm − ∆t
∆t

)
0.5
] (21)

where um_end is the final vehicle speed during acceleration under pure electric driving mode (km/h).

According to the maximum power calculated by the dynamic indexes mentioned above, the
driving motor power must satisfy the following requirements:

Pm_max ≥ max
{
Pm_max1, Pm_max2

}
(22)

Meanwhile, the sum of motor and engine power must meet the design requirements described in
Section 3.1.1:

Ptotal = Pe + Pm ≥ max{Ptotal1, Ptotal2, Ptotal3, Ptotal4} (23)

Therefore, the engine power must satisfy:

Pe_max ≥ Ptotal − Pm_max (24)

3.1.3. Determination of Power Battery Parameters

As the power source of motor, the performance parameters of power battery mainly consider two
factors: Power demand and energy demand. The battery pack should ensure that the peak discharge
power of the battery is higher than the maximum power of the motor, and the total energy of the
battery can meet the driving range requirements.
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(1) Power demand of the power battery:

Pb_max ≥
Pm_max

ηbηm
(25)

ηb is the discharging efficiency of the power battery, ηm is the motor efficiency.
(2) Energy demand of the power battery:

Wb =
PvL

(SOC1 − SOC0)ηbηmv
(26)

Pv is the power of the vehicle running at constant speed v (km/h); L is the driving range under
pure electric driving mode (km); SOC1 and SOC0 are respectively the maximum and minimum
values of battery SOC applicable range.

Therefore, the rated capacity of the power battery pack must satisfy:

Q0 ≥
Wb
Voc

(27)

3.2. Construction of Optimization Model

For PHEV, it is hoped that fossil fuels will be replaced as much as possible by grid power. At the
same time, the hybrid electric city bus is usually focused on the optimization of vehicle fuel economy.
Therefore, the optimization problem of PHEV power system is to find the best fuel economy power
system scheme [23] on the premise of satisfying the dynamic index constraints. Its mathematical model
is described as Equation (28): 

min f (X)

s.t. g j(X) ≥ 0 j = 1, 2, · · ·, m
xlow

i ≤ xi ≤ xup
i i = 1, 2, · · ·, n

(28)

f (X) is the objective function, X is the optimization variables; gi(X) is the constraint conditions, m is
the number of constraints; xi is the parameter to be optimized, xlow

i and xup
i are respectively the lower

and upper limits of ith parameter to be optimized, n is the number of optimization variables.

3.2.1. Optimization Variables

In the optimization problem, the selection of design variables is the basis of the optimization
design. The design variables should not only represent the power components, but also update the
characteristic curve of the power components when the design variables are updated. For engines and
motors, the power parameter is often selected as the design variable [24]; for batteries, battery capacity
is proportional to the charge-discharge power and the number of batteries, therefore battery capacity is
chosen as the design variable.

Consequently, the maximum engine power Pe_max, the maximum motor power Pm_max, and the
battery capacity Q0 are selected as design variables, as shown in Equation (29).

X = [Pe_max, Pm_max, Q0] (29)

In the process of parameter optimization, it is necessary to update the design variables continuously
through the optimization algorithm, and then evaluate the objective function value under the design
variables. Therefore, the component model should be extensible, that is, when the design variables are
updated, the component model should be updated accordingly so that the corresponding component
optimization can be performed. Linear extended model is widely used in commercial software because
of its simplicity and convenience. The nonlinear extended model is complex and computationally
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intensive, and the results obtained by linear extended method are not much different from those
obtained by non-linear extended method [25]. Therefore, the linear extended model is adopted for all
parts of power system in this paper, and the component model established in Chapter 2 is used for
reference model.

3.2.2. Constraint Conditions

The optimization and matching of PHEV power sources must satisfy the system development
objectives, the system development objectives and other component constraints constitute the
constraints of the optimization. This paper does not discuss vehicle emissions, so there are three main
dynamic indicators: Maximum vehicle speed, acceleration time, and maximum climbing degree, and
one economic indicator: Equivalent fuel consumption per hundred kilometers. Meanwhile, the design
variables of reference models should be adjusted by the analysis in Section 3.1, as shown in Table 2.

Table 2. Constraint conditions of optimization and matching.

Constraint Conditions Lower Boundary Upper Boundary

Maximum velocity (EV) 50 km/h -
Maximum velocity (Hybrid) 80 km/h -

0-50km/h Accelerating time (EV) - 25 s
0-50km/h Accelerating time (Hybrid) - 20 s

Maximum gradeability 20% -
Fuel consumption of 100 km - 32.6 L

Engine power 68 kW 150 kW
Driving motor power 120 kW 225 kW

Power battery capacity 50 Ah 100 Ah

3.2.3. Selection of Energy Management Strategy

PHEV mainly has the following several energy management modes: Charge-depleting mode,
charge-sustaining mode, pure engine mode, and pure electric mode. In this paper, the energy
management strategy in reference [26] is adopted. The control strategy consists of three parts: Pure
electric mode (EV), charge-depleting mode (CD), and charge-sustaining (CS). In EV mode, the motor
drives the vehicle separately, and all the driving power comes from the power battery pack. In CD
mode, the SOC of the power battery pack decreases gradually when the motor and the engine drive the
vehicle together, and because the engine participates in the power output, the speed of SOC decreases
slower than that of EV mode. In CS mode, the engine provides most of the power output required for
driving the vehicle, and SOC is maintained in a suitable range until parking. The switching control
rules of PHEV working modes are shown in Figure 6. SOCCD is the SOC threshold from EV mode to
CD mode, and SOCCS is the SOC threshold from CD mode to CS mode.
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3.2.4. Optimization Platform

The structure of the PHEV integrated optimization platform based on Matlab/Simulink and Isight
is shown in Figure 7. The PHEV model in the MATLAB/Simulink environment is invoked through the
interface module of Isight, and the parameters of PHEV to be optimized in the model are modified.
Then, under the Isight environment, the global optimization algorithm program and PHEV model are
simulated to solve the power performance and fuel economy, and the results are fed back to Isight, so
that the iteration steps are repeated until the preset iteration steps are completed or the preset accuracy
is achieved.
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4. Multi-Objective Optimization Considering Fuel Economy and Lightweight

Aiming at the problem that parameter matching needs to weigh different design objectives, a
multi-objective optimization matching method is proposed. When matching power sources, factors of
lightweight, fuel economy, power performance, emission and cost are usually considered. This paper
does not consider emission performance, the cost is achieved through lightweight. When the engine,
motor and battery are lightweight, the mass is smaller, and the cost is lower. Therefore, this paper
adopts weight method and non-normalization method respectively, and considers fuel economy and
lightweight as the objectives to optimize PHEV power source components.

The fuel economy of vehicle is usually measured by the fuel consumption of 100 kilometers under
certain operating conditions. However, PHEV can provide power either from fuel or from battery,
the equivalent fuel consumption of 100 kilometers is used to measure the fuel economy of PHEV.
Electricity equivalent fuel consumption is converted into fuel consumption through Equation (30) [27]:

FCe =
E∆SOC
qgηeηm

=
∆SOC ·Q0 · 3600 ·

∫
Voc d(1− SOC)

qgηeηm
(30)

qg is fuel btu (J/kg), ηe is engine efficiency, ηm is engine efficiency, ∆SOC is variation of SOC, and E∆SOC
is the energy converted for electricity consumption.

Equivalent fuel consumption of electricity consumption plus actual fuel consumption is equivalent
fuel consumption of vehicles. Equivalent fuel consumption of 100 km is shown as Equation (31):

FC =
FCg + FCe

10−5ρgdcyc
(31)

FC is the equivalent fuel consumption of 100 kilometers (L/100 km), FCg is fuel consumption (g), ρg is
fuel density (kg/L), and dcyc is the distance of driving cycle (m).
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Hybrid electric system consists of engine, motor, battery pack, and other components. The
mass variations of vehicle can be estimated by the following mass model. The vehicle power system
mass [28] can be described as Equation (32):

Mpt = Me + Mm + Mb
Me = a× Pe_max + b
Mm = c× Pm_max + d
Mb =

Q0×Vt
h

(32)

a, b, c, d, h are fit coefficients, which are obtained by linear fitting of the mass, power and energy
relationships of engine, motor and power battery; Mpt is power system mass of PHEV (kg), Me is
the engine mass (kg), Mm is the motor mass (kg), and Mb is the power battery mass (kg). Through
Equation (32), it can be seen that the mass of the vehicle power system has a linear relationship with
the power of the power system, that is to say, reducing the system power can reduce the mass of the
vehicle power system and achieve lightweight.

4.1. Weighted Method

Weighted method is a commonly used method to deal with multi-objective problems, which
can transform multi-objective problem into single-objective problem. The optimization objectives
considering fuel economy and lightweight can be expressed as Equation (33):

min f (X) = [Pe_max, Pm_max, Q0, FC] (33)

By weighting and normalizing, the objective function is shown as:

f (X) = w1
Pe_max

120
+ w2

Pm_max

150
+ w3

Q0

60
+ w4

FC
32.6

(34)

The objective function value of the original vehicle is 1.0, which facilitates the comparison between
the matching results and the original vehicle parameters. Four different weight combinations (as
shown in Table 3) are selected. Among them, combination 1 gives priority to engine lightweight,
combination 2 gives priority to motor lightweight, combination 3 gives priority to battery lightweight,
and combination 4 balances the lightweight and economy of power components.

Table 3. Values of weight coefficients.

1st Set 2nd Set 3rd Set 4th Set

w1 0.7 0.1 0.1 0.25
w2 0.1 0.7 0.1 0.25
w2 0.1 0.1 0.7 0.25
w4 0.1 0.1 0.1 0.25

The multi-island genetic algorithm (MIGA) is used to optimize the power system parameters in the
optimization platform established in Section 3.2.4. The MIGA is developed on the basis of traditional
genetic algorithm (GA). It inherits the basic ideas of GA. The biggest difference between them is that
MIGA divides many populations into several sub-populations, performs GA selection, crossover, and
mutation operations in sub-populations, and periodically performs targeted immigration operations
among different populations [29]. The evolutionary process of its two adjacent generations is shown in
Figure 8.
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Considering the optimization time and the accuracy of the results, the parameters of the
multi-island genetic algorithm are set as follows: the total population size is 50, the number of
evolutionary generations is 500, the crossover probability is 0.9, and the mutation probability is 0.01.

The results of different weight combination optimizations are listed in Table 4. Combination 1
indicates that the engine of the original vehicle has much room for lightweight. Combination 2 and 3
show that the motor and battery parameters of the original vehicle are close to the minimum value of
the constraints. Because of the power constraint between the motor and battery capacity, the maximum
power of the motor or the battery capacity will be reduced while the value of another parameter is
reduced, so the optimal matching results of combination 2 and 3 are close.

Table 4. Optimal matching results using weight method.

Title Design Variables 1st Set 2nd Set 3rd Set 4th Set Original

Pe (kW) 72.4 102.3 97.8 80.5 120
Variation (%) −39.67 −14.75 −18.5 −32.92 0

Pm (kW) 165.5 136.4 143.9 141.2 150
Variation (%) 10.33 −9.06 −4.07 −5.87 0

Q0 (Ah) 67.3 54.3 56.1 57.7 60
Variation (%) 12.17 −9.5 −6.5 −3.83 0

FC (L/100 km) 32.92 32.8 32.73 32.15 32.6
Variation (%) 0.98 0.61 0.4 −0.99 0

The optimal matching result of combination 1 is that the maximum engine power is 72.4 kW,
the maximum motor power is 165.5 kW, and the battery capacity is 67.3 Ah. When the priority is given
to the lightweight of the engine, the maximum power of the engine is determined by the lowest speed
of the engine driving mode, and the maximum power of the engine is 39.67% lower than that of the
original vehicle. Meanwhile, other dynamic and fuel economy indexes are satisfied by increasing
motor power and battery capacity. The maximum power of motor increases by 10.33% and battery
capacity increases by 12.17%. The optimal matching result of combination 2 is that the maximum
engine power is 102.3 kW, the maximum motor power is 136.4 kW, and the battery capacity is 54.3 Ah.
When the priority is given to the lightweight of the motor, the power of the motor is determined by
the requirement of pure electric driving mode acceleration time for motor power. The engine power
decreases compared with the original vehicle. The optimal matching result of combination 3 is that the
maximum engine power is 97.8 kW, the maximum motor power is 143.9 kW, and the battery capacity
is 56.1 Ah. When the priority is given to the lightweight of the power battery, the matching result
is determined by the requirement of motor power for battery power, so the matching result is not
much different from that of combination 2. The optimal matching result of combination 4 is that the
maximum engine power is 80.5 kW, the maximum motor power is 141.2 kW, and the battery capacity
is 57.7 Ah. When considering lightweight and economy, all design objectives are improved, and better
matching results can be obtained in all aspects of indicators. The equivalent fuel consumption of
100 km is decreased by about 1%.



www.manaraa.com

Energies 2020, 13, 1127 15 of 20

4.2. Non-Normalized Method

The non-normalized method is used to solve multi-objective optimal problem, without setting the
weight of each target in advance, and the Pareto mechanism is adopted. Pareto frontier and optimal
solution set can be obtained by the non-dominated sorting genetic algorithms with elite strategy
(NSGA-II), and the optimal solution [30] can be obtained under any preference for the optimal objective.

Since the multi-objective algorithm has lower accuracy for solving problems with more than four
design goals and above, the solution speed is slow, and it is difficult to process the optimization results,
the design goal of Section 3.2.1. needs to be reduced. The maximum discharge power of the battery
is equal to the maximum power of the motor, and the design variables are only engine power and
motor power. Then, the goal of lightweight is unified into the total power of engine and motor. The
transformed multi-objective problem can be expressed as:

min f (X) = [P(e+m)_max, FC] (35)

P(e+m)_max = Pe_max + Pm_max represents the total power of the power system.
In this section, the multi-objective optimization algorithm NSGA-II based on Pareto mechanism is

adopted. The implementation step is shown as Figure 9.
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optimization step.

Then multi-objective optimization is performed by the NSGA-II algorithm, and the number
of individuals per generation is 72, the number of evolutionary generations is 300, the crossover
probability is 0.9, and the mutation probability is 0.01. Figure 10 shows the results of multi-objective
optimization matching considering fuel economy and lightweight. The smaller the total power value
of power system, the better the lightweight, and the smaller the equivalent 100 km fuel consumption,
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the better the fuel economy. It can be seen from Figure 10 that the lightweight and fuel economy of
the power components are conflicting, and the lightweight will inevitably lead to an increase in fuel
consumption. So, how to balance lightweight and fuel economy is very important. As can be seen
from Figure 10, the design point of the original vehicle is not at the Pareto frontier, and there is much
room for improvement in both lightweight and fuel economy.Energies 2020, 13, x FOR PEER REVIEW 17 of 21 
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Figure 10. Multi-objective optimization results considering lightweight and fuel economy.

Considering the lightweight and fuel economy of power system components, the points on Pareto
frontier should be selected to obtain better results than other matching combinations. The Pareto
frontier in Figure 10 is extracted and 3rd order polynominal fitting is carried out to obtain cubic curve
with higher fitting accuracy, as shown in Figure 11. The fitting curve equation is as follows:

FC = −7.257× 10−6
× P3

(e+m)_max + 0.0057× P2
(e+m)_max − 1.532× P(e+m)_max + 170.1 (36)

According to the Pareto frontier fitting curve, the optimal relationship between the total power of
the power system and the equivalent fuel consumption of 100 km is estimated. If the economy of the
equivalent fuel consumption of 100 kilometers is 32.5 L, the minimum total power of the power system
is 243.2 kW. Figure 11 shows that increasing the total system power can reduce fuel consumption,
but reducing the fuel consumption of 1L requires more power increasing. Since the curve of fuel
consumption and total power per 100 km is convex, the power cost of reducing fuel consumption is
also increasing. Moreover, when the total power of the system exceeds 290 kW, the equivalent fuel
consumption per 100 km is almost no longer reduced and the optimal fuel economy is achieved.

Figure 12 shows the distribution points of the design variables in the multi-objective optimization
matching results considering fuel economy and lightweight. It can be seen that the maximum power of
motor selected in the range of 140 kW to 215 kW can satisfy all constraints and obtain feasible solutions;
and the maximum power of engine selected in the design range can obtain feasible solutions. But in
order to get the best matching result, the maximum power of engine and motor can only be selected in
limited space. The Pareto solution set of Figure 12 is divided into two sections and respectively fitted
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to obtain the relationship between the maximum power of the motor and the maximum power of the
engine as shown in Equation (37):

Pm_max =

{
−7.7881× Pe_max + 783.11 Pe_max ∈ [75, 85]
140 Pe_max ∈ [70, 85]

(37)
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Figure 13 is a three-dimensional point map of multi-objective optimization results considering
fuel economy and lightweight. The optimal lightweight and economy can be obtained by selecting the
power system assembly according to Equation (37).Energies 2020, 13, x FOR PEER REVIEW 19 of 21 
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20 sets of Pareto solutions superior to the original vehicle in terms of lightweight and fuel economy
are selected, as shown in Table 5. The choice of the power system can be determined by the designer’s
different preferences for the two objectives. If the largest lightweight effect and the smallest volume
are to be achieved, the first group of matching results should be chosen, where the lightweight effect
is increased by 8.26%; if the best fuel economy is to be achieved, the 20th group of matching results
should be chosen, where the fuel economy effect is increased by 2.26%.

Table 5. Optimal matching results using NSGA-II algorithm.

Parameters Design Variables Design Target

Pe_max(kW) Pm_max(kW) Q0(Ah) P(e+m)_max(kW) FC (L/100 km)

Original 120 150 60 270 32.6
1st Set 78.48 169.23 67.69 247.71 (−8.26%) 32.46 (−0.41%)
2nd Set 77.50 170.30 68.12 247.80 (−8.22%) 32.40 (−0.60%)
3rd Set 78.36 170.30 68.12 248.66 (−7.90%) 32.37 (−0.71%)
4th Set 78.11 171.11 68.44 249.22 (−7.69%) 32.34 (−0.78%)
5th Set 79.10 171.11 68.44 250.21 (−7.33%) 32.30 (−0.93%)
6th Set 76.89 174.87 69.95 251.76 (−6.75%) 32.28 (−0.98%)
7th Set 77.26 175.41 70.16 252.67 (−6.42%) 32.24 (−1.11%)
8th Set 76.77 175.95 70.38 252.72 (−6.40%) 32.21 (−1.21%)
9th Set 77.02 177.56 71.02 254.58 (−5.71%) 32.18 (−1.28%)

10th Set 77.75 177.83 71.13 255.58 (−5.34%) 32.16 (−1.35%)
11th Set 76.53 179.45 71.78 255.97 (−5.20%) 32.10 (−1.54%)
12th Set 77.02 179.45 71.78 256.46 (−5.01%) 32.09 (−1.57%)
13th Set 76.65 181.33 72.53 257.98 (−4.45%) 32.07 (−1.63%)
14th Set 77.63 180.52 72.21 258.15 (−4.39%) 32.06 (−1.65%)
15th Set 77.02 182.94 73.18 259.96 (−3.72%) 32.04 (−1.70%)
16th Set 77.39 182.94 73.18 260.33 (−3.58%) 32.00 (−1.83%)
17th Set 76.16 185.36 74.14 261.52 (−3.14%) 31.96 (−1.96%)
18th Set 77.27 184.29 73.72 261.55 (−3.13%) 31.91 (−2.11%)
19th Set 78.00 184.82 73.93 262.83 (−2.66%) 31.90 (−2.15%)
20th Set 75.80 188.59 75.44 264.38 (−2.08%) 31.86 (−2.26%)
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5. Conclusions

In this paper, regarding the problem that PHEV parameter matching needs to weigh different
design objectives, a multi-objective optimization matching method based on genetic algorithm is
proposed. This method is not only suitable for plug-in hybrid electric buses, but also for other types of
hybrid electric vehicles, traditional vehicles, and pure electric vehicles. The vehicle dynamic model is
established based on MATLAB/Simulink, and the feasibility of the model is verified by simulation.
The main performance parameters of the power system are matched by theoretical analysis, and the
PHEV integrated optimization simulation platform is established based on Isight. Power source
components are optimized considering fuel economy and lightweight objectives under the constraints
of dynamic indicators. The weight method is adopted the by transforming multi-objective problems
into single-objective problems, and the multi-island genetic algorithm is used to obtain the optimal
matching results. The results show that the weight method can obtain optimal matching results,
and the equivalent fuel consumption of 100 km is reduced by 1%. Then, the four design objectives
are reduced to two design objectives by removing the constraints, and the Pareto optimal solution set
is obtained by using the NSGA-II algorithm. The optimization results show that compared with the
original vehicle, the lightweight effect is increased by 8.26% and the fuel economy effect is increased
by 2.26%.
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